We consider scenarios wherein the null in the correlations occurs over wave numbers 1?k_dip?10??Mpc^-1, and examine the prospects of detecting such a damping in the HI signal due to the nulls at the level of power and bispectra in future observational missions.The three-dimensional emergent magnetic field B^e of a magnetic hopfion gives rise to emergent magnetomultipoles in a similar manner to the multipoles of classical electromagnetic field. Here, we show that the nonlinear responses of a hopfion are characterized by its emergent magnetic toroidal moment T_z^e=1/2∫(r×B^e)_zdV and emergent magnetic octupole component Γ^e=∫[(x^2+y^2)B_z^e-xzB_x^e-yzB_y^e]dV. The hopfion exhibits nonreciprocal dynamics (nonlinear hopfion Hall effect) under an ac driving current applied along (perpendicular to) the direction of T_z^e. The sign of nonreciprocity and nonlinear Hall angle is determined by the polarity and chirality of hopfion. The nonlinear electrical transport induced by a magnetic hopfion is also discussed. This Letter reveals the vital roles of emergent magnetomultipoles in nonlinear hopfion dynamics and could stimulate further investigations on the dynamical responses of topological spin textures induced by emergent electromagnetic muSemiconductor quantum dots have proven to be a useful platform for quantum simulation in the solid state. However, implementing a superconducting coupling between quantum dots mediated by a Cooper pair has so far suffered from limited tunability and strong suppression. This has limited applications such as Cooper pair splitting and quantum dot simulation of topological Kitaev chains. In this Letter, we propose how to mediate tunable effective couplings via Andreev bound states in a semiconductor-superconductor nanowire connecting two quantum dots. We show that in this way it is possible to individually control both the coupling mediated by Cooper pairs and by single electrons by changing the properties of the Andreev bound states with easily accessible experimental parameters. In addition, the problem of coupling suppression is greatly mitigated. We also propose how to experimentally extract the coupling strengths from resonant current in a three-terminal junction. Our proposal will enable future experiments Recent advances have demonstrated that evaporation can play a significant role on soap film stability, which is a key concern in many industrial areas but also for children playing with bubbles. Thus, evaporation leads to a film thinning but also to a film cooling, which has been overlooked for soapy objects. Here, we study the temperature variation of an evaporating soap film for different values of relative humidity and glycerol concentrations. We evidence that the temperature of soap films can decrease after their creation up to 8?°C. We propose a model describing the temperature drop of soap films after their formation that is in quantitative agreement with our experiments. We emphasize that this cooling effect is significant and must be carefully considered in future studies on the dynamics of soap films.Despite the theoretical indication that fast neutrino-flavor conversion (FFC) ubiquitously occurs iin core-collapse supernovae and binary neutron star mergers, the lack of global simulations has been the greatest obstacle to study their astrophysical consequences. In this Letter, we present large-scale (50 km) simulations of FFC in spherical symmetry by using a novel approach. We effectively rescale the oscillation scale of FFC by reducing the number of injected neutrinos in the simulation box, and then extrapolate back to the case of the target density of neutrinos with a convergence study. We find that FFC in all models achieves a quasisteady state in the nonlinear regime, and its saturation property of FFC is universal. We also find that temporal- and spatial variations of FFC are smeared out at large radii due to phase cancellation through neutrino self-interactions. Finally, we provide a new diagnostic quantity, electron neutrino lepton number subtracted by heavy one angular crossing, to assess the nonliAlthough doping with alkali atoms is a powerful technique for introducing charge carriers into physical systems, the resulting charge-transfer systems are generally not air stable. Here we describe computationally a strategy towards increasing the stability of alkali-doped materials that employs stoichiometrically unbalanced salt crystals with excess cations (which could be deposited during, e.g., in situ gating) to achieve doping levels similar to those attained by pure alkali metal doping. The crystalline interior of the salt crystal acts as a template to stabilize the excess dopant atoms against oxidation and deintercalation, which otherwise would be highly favorable. We characterize this doping method for graphene, NbSe_2, and Bi_2Se_3 and its effect on direct-to-indirect band gap transitions, 2D superconductivity, and thermoelectric performance. Salt intercalation should be generally applicable to systems which can accommodate this "ionic crystal" doping (and particularly favorable when geometricalWe introduce and study a new model consisting of a single classical random walker undergoing continuous monitoring at rate γ on a discrete lattice. Although such a continuous measurement cannot affect physical observables, it has a nontrivial effect on the probability distribution of the random walker. At small γ, we show analytically that the time evolution of the latter can be mapped to the stochastic heat equation. In this limit, the width of the log-probability thus follows a Family-Vicsek scaling law, N^αf(t/N^α/β), with roughness and growth exponents corresponding to the Kardar-Parisi-Zhang (KPZ) universality class, i.e., α_KPZ^1D=1/2 and β_KPZ^1D=1/3, respectively. When γ is increased outside this regime, we find numerically in 1D a crossover from the KPZ class to a new universality class characterized by exponents α_M^1D?1 and β_M^1D?1.4. In 3D, varying γ beyond a critical value γ_M^c leads to a phase transition from a smooth phase that we identify as the Edwards-Wilkinson clasWe show that the most general scalar-tensor theory of gravity up to four derivatives in 3+1 dimensions is well-posed in a modified version of the CCZ4 formulation of the Einstein equations in singularity-avoiding coordinates. We demonstrate the robustness of our new formulation in practice by studying equal mass black hole binary mergers for different values of the coupling constants. Although our analysis of well-posedness is restricted to cases in which the couplings are small, we find that in simulations we are able to push the couplings to larger values, so that a certain weak coupling condition is order one, without instabilities developing. Our Letter provides the means for such simulations to be undertaken by the many numerical relativity codes that rely on the moving puncture gauge to evolve black hole singularities.Using a structured light beam carrying orbital angular momentum, we demonstrate excitation of the center-of-mass motion of a single atom in the transverse direction to the beam's propagation. This interaction enables quantum control of atomic motion in all axes with a single beam direction, which leads to applications in quantum computing and simulations with ion crystals. Here we demonstrate all the key features required for these applications, namely, coherent dynamics and strong carrier suppression in a configuration with the ion centered in the beam, which allows for single ion addressing and also provides robustness against pointing instabilities. To quantify transverse momentum transfer, we observe coherent dynamics on the sidebands of the S_1/2 to D_5/2 transition near 729 nm of a singly charged ^40Ca^+ https://www.selleckchem.com/products/gsk126.html ion, cooled near the ground state of motion in the 3D harmonic potential of a Paul trap, and placed at the center of a first-order Laguerre-Gaussian beam. Exchange of quanta in the perpendicularTopological defects can act as local impurities that seed cosmological phase transitions. In this Letter, we study the case of domain walls and how they can affect the electroweak phase transition in the singlet-extended standard model with a Z_2-symmetric potential. When the transition occurs in two steps, the early breaking of the Z_2 symmetry implies the formation of domain walls which then act as nucleation sites for the second step. We develop a method based on a Kaluza-Klein decomposition to calculate the rate of the catalyzed phase transition within the 3D theory on the domain wall surface. By comparison with the standard homogeneous rate, we conclude that the seeded phase transition is generically faster and it ultimately determines the way the phase transition is completed. We finally comment on the phenomenological implications for gravitational waves.We apply modular flow-entanglement generated dynamics-to characterize quantum orders of ground state wave functions. In particular, we study the linear response of the entanglement entropy of a simply connected region with respect to modular flow. First, we apply it to (1+1)D conformal field theories and demonstrate its relationship to the chiral central charge-or, equivalently, the perturbative gravitational anomaly-which is shown to vanish. Next, we apply it to (2+1)D gapped ground states where it reduces to a recently proposed formula by Kim et al. that is conjectured to compute the edge chiral central charge. Modular flow provides an intuitive picture for this conjecture based on bulk-edge correspondence. We also provide numerics on free-fermion models that lend support to our picture.We study the critical features of the order parameter's fluctuations near the threshold of mixed-order phase transitions in randomly interdependent spatial networks. Remarkably, we find that although the structure of the order parameter is not scale invariant, its fluctuations are fractal up to a well-defined correlation length ξ^' that diverges when approaching the mixed-order transition threshold. We characterize the self-similar nature of these critical fluctuations through their effective fractal dimension d_f^'=3d/4, and correlation length exponent ν^'=2/d, where d is the dimension of the system. By analyzing percolation and magnetization, we demonstrate that d_f^' and ν^' are the same for both, i.e., independent of the symmetry of the process for any d of the underlying networks.We report on nonlinear squeezing effects of polarization states of light by harnessing the intrinsic correlations from a polarization-entangled light source and click-counting measurements. Nonlinear Stokes operators are obtained from harnessing the click-counting theory in combination with angular-momentum-type algebras. To quantify quantum effects, theoretical bounds are derived for second- and higher-order moments of nonlinear Stokes operators. The experimental validation of our concept is rendered possible by developing an efficient source, using a spectrally decorrelated type-II phase-matched waveguide inside a Sagnac interferometer. Correlated click statistics and moments are directly obtained from an eight-time-bin quasi-photon-number-resolving detection system. Macroscopic Bell states that are readily available with our source show the distinct nature of nonlinear polarization squeezing in up to eighth-order correlations, matching our theoretical predictions. Furthermore, our data certify nonclassicalThe one-neutron knockout from ^52Ca in inverse kinematics onto a proton target was performed at ?230??MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in ^51Ca and the momentum distributions corresponding to the removal of 1f_7/2 and 2p_3/2 neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron 1f_7/2 and 2p_3/2 orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the 2p_3/2 orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.Skyrmions endowed with topological protection have been extensively investigated in various platforms including magnetics, ferroelectrics, and liquid crystals, stimulating applications such as memories, logic devices, and neuromorphic computing. While the optical counterpart has been proposed and realized recently, the study of optical skyrmions is still in its infancy. Among the unexplored questions, the investigation of the topology induced robustness against disorder is of substantial importance on both fundamental and practical sides but remains elusive. In this Letter, we manage to generate optical skyrmions numerically in real space with different topological features at will, providing a unique platform to investigate the robustness of various optical skyrmions. A disorder-induced topological state transition is observed for the first time in a family of optical skyrmions composed of six classes with different skyrmion numbers. Intriguingly, the optical skyrmions produced from a vectorial hologram are Multipartite entanglement plays an essential role in both quantum information science and many-body physics. Because of the exponentially large dimension and complex geometric structure of the state space, the detection of entanglement in many-body systems is extremely challenging in reality. Conventional means, like entanglement witness and entropy criterion, either highly depend on the prior knowledge of the studied systems or the detection capability is relatively weak. In this Letter, we propose a framework for designing multipartite entanglement criteria based on permutation moments, which have an effective implementation with either the generalized control-swap quantum circuits or the random unitary techniques. As an example, in the bipartite scenario, we develop an entanglement criterion that can detect bound entanglement and show strong detection capability in the multiqubit Ising model with a long-range XY Hamiltonian. In the multipartite case, the permutation-moment-based criteria can detect entanglWe use a continuum model to examine the effect of activity on a phase-separating mixture of an extensile active nematic and a passive fluid. We highlight the distinct role of (i) previously considered interfacial active stresses and (ii) bulk active stresses that couple to liquid crystalline degrees of freedom. Interfacial active stresses can arrest phase separation, as previously demonstrated. Bulk extensile active stresses can additionally strongly suppress phase separation by sustained self-stirring of the fluid, substantially reducing the size of the coexistence region in the temperature-concentration plane relative to that of the passive system. The phase-separated state is a dynamical emulsion of continuously splitting and merging droplets, as suggested by recent experiments. Using scaling analysis and simulations, we identify various regimes for the dependence of droplet size on activity. These results can provide a criterion for identifying the mechanisms responsible for arresting phase separation in Two-photon Hong-Ou-Mandel (HOM) interference is a fundamental quantum effect with no classical counterpart. The existing research on two-photon interference was mainly limited in one degree of freedom (DOF); hence, it is still a challenge to realize quantum interference in multiple DOFs. Here, we demonstrate HOM interference between two hyperentangled photons in two DOFs of polarization and orbital angular momentum (OAM) for all 16 hyperentangled Bell states. We observe hyperentangled two-photon interference with a bunching effect for ten symmetric states (nine boson-boson states and one fermion-fermion state) and an antibunching effect for six antisymmetric states (three boson-fermion states and three fermion-boson states). More interestingly, expanding the Hilbert space by introducing an extra DOF for two photons enables one to transfer the unmeasurable external phase in the initial DOF to a measurable internal phase in the expanded two DOFs. We directly measured the symmetric exchange phases being 0.012±0.We revisit the possibility that dark matter is composed of stable scalar glueballs of a confining dark SU(3) gauge theory coupled only to gravity. The relic abundance of dark glueballs is studied for the first time in a thermal effective theory accounting for strong-coupling dynamics. An important ingredient of our analysis is the use of an effective potential for glueballs that is fitted by lattice simulations. We predict the relic abundance to be in the range 0.12ζ_T^-3Λ/(137.9??eV)?Ωh^2?0.12ζ_T^-3Λ/(82.7??eV), with Λ being the confinement scale, ζ_T the visible-to-dark sector temperature ratio, and the uncertainty is coming from the fit to lattice data. This prediction is an order of magnitude smaller than the existing glueball abundance results in the literature. Our framework can be easily generalized to different gauge groups and modified cosmological histories paving the way toward consistent exploration of strongly coupled dark sectors and their cosmological implications.A positron emission tomography (PET) radioligand for imaging phosphodiesterase 4D (PDE4D) would benefit drug discovery and the investigation of neuropsychiatric disorders. The most promising radioligand to date, namely, [11C]T1650, has shown unstable quantification in humans. Structural elaboration of [11C]T1650 was therefore deemed necessary. High target affinity in the low nM range is usually required for successful PET radioligands. In our PDE4D PET radioligand development, we formulated and optimized an empirical equation (log[IC50 (nM)] = P1 + P2 + P3 + P4) that well described the relationship between binding affinity and empirically derived values (P1-P4) for the individual fragments in four subregions commonly composing each inhibitor (R2 = 0.988, n = 62). This equation was used to predict compounds that would have high inhibitory potency. Fourteen new compounds were obtained with IC50 of 0.3-10 nM. Finally, eight compounds were judged to be worthy of future radiolabeling and evaluation as PDE4D PET raForce recording (mode, intensity, and orientation) is of great importance in medical rehabilitation, military reconnaissance, space exploration, etc. However, sensors with both reversibility and memorability are still challenging. Here, a reversible sensor based on polymer-dispersed cholesteric liquid crystals (CLC) is developed as a force recorder. Based on the microarea mechano-optical response and finite element analysis, it is confirmed that the mechanochromic response is mediated by the shear deformation of the polymer network and neighboring CLC. There is an obvious quantitative relationship between force intensity, mode, orientation, and the microarea optical response. Moreover, the sensing layer with a lower modulus or thickness is advantageous for a more sensitive device with lower starting pressure. Additionally, the excellent sensitivity and accuracy also highlight the potential applications in force analysis, path tracking, or pattern detection.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2023-09-15 (金) 07:28:33 (235d)