https://www.selleckchem.com/products/cbl0137-cbl-0137.html However, most of the existing models only extract features from dose difference maps computed from EPID images, which do not fully characterize all information of the positional errors. In addition, the position error has a three-dimensional spatial nature, which has never been explored in previous work. To address the above problems, a deep neural network (DNN) model with structural similarity difference and orientation-based loss is proposed in this paper, which consists of a feature extraction network and a feature enhancement network. To capture more information, three types of Structural SIMilarity (SSIM) sub-index maps are computed to enhance the luminance, contrast, and structural features of EPID images, respectively. These maps and the dose difference maps are fed into different networks to extract radiomic features. To acquiThe performance of previous machine learning models for gait phase is only satisfactory under limited conditions. First, they produce accurate estimations only when the ground truth of the gait phase (of the target subject) is known. In contrast, when the ground truth of a target subject is not used to train an algorithm, the estimation error noticeably increases. Expensive equipment is required to precisely measure the ground truth of the gait phase. Thus, previous methods have practical shortcoming when they are optimized for individual users. To address this problem, this study introduces an unsupervised domain adaptation technique for estimation without the true gait phase of the target subject. Specifically, a domain-adversarial neural network was modified to perform regression on continuous gait phases. Second, the accuracy of previous models can be degraded by variations in stride time. To address this problem, this study developed an adaptive window method that actively considers changes in stride timThe abnormal behavior detection is the vital for evaluation of daily-life health status of the patient with cognitive impairment. Previous studies about abnormal behavior detection indicate that convolution neural network (CNN)-based computer vision owns the high robustness and accuracy for detection. However, executing CNN model on the cloud possible incurs a privacy disclosure problem during data transmission, and the high computation overhead makes difficult to execute the model on edge-end IoT devices with a well real-time performance. In this paper, we realize a skeleton-based abnormal behavior detection, and propose a secure partitioned CNN model (SP-CNN) to extract human skeleton keypoints and achieve safely collaborative computing by deploying different CNN model layers on the cloud and the IoT device. Because, the data outputted from the IoT device are processed by the several CNN layers instead of transmitting the sensitive video data, objectively it reduces the risk of privacy disclosure. Moreover,In recent years, clustering methods based on deep generative models have received great attention in various unsupervised applications, due to their capabilities for learning promising latent embeddings from original data. This article proposes a novel clustering method based on variational autoencoder (VAE) with spherical latent embeddings. The merits of our clustering method can be summarized as follows. First, instead of considering the Gaussian mixture model (GMM) as the prior over latent space as in a variety of existing VAE-based deep clustering methods, the von Mises-Fisher mixture model prior is deployed in our method, leading to spherical latent embeddings that can explicitly control the balance between the capacity of decoder and the utilization of latent embedding in a principled way. Second, a dual VAE structure is leveraged to impose the reconstruction constraint for the latent embedding and its corresponding noise counterpart, which embeds the input data into a hyperspherical latent space for clIn this article, an event-based near-optimal tracking control algorithm is developed for a class of nonaffine systems. First, in order to gain the tracking control strategy, the costate function is established through the iterative dual heuristic dynamic programming (DHP) algorithm. Then, the event-based control method is employed to improve the utilization efficiency of resources and ensure that the closed-loop system has an excellent control performance. Meanwhile, the input-to-state stability (ISS) is proven for the event-based tracking plant. In addition, three kinds of neural networks are used in the event-based DHP algorithm, which aims to identify the nonaffine nonlinear system, estimate the costate function, and approximate the tracking control law. Finally, a numerical experimental simulation is conducted to verify the effectiveness of the proposed scheme. Moreover, in order to further validate the feasibility, the algorithm is applied to the wastewater treatment plant to effectively control the concIn this article, minimal pinning control for oscillatority (i.e., instability) of Boolean networks (BNs) under algebraic state space representations method is studied. First, two criteria for oscillatority of BNs are obtained from the aspects of state transition matrix (STM) and network structure (NS) of BNs, respectively. A distributed pinning control (DPC) from these two aspects is proposed one is called STM-based DPC and the other one is called NS-based DPC, both of which are only dependent on local in-neighbors. As for STM-based DPC, one arbitrary node can be chosen to be controlled, based on certain solvability of several equations, meanwhile a hybrid pinning control (HPC) combining DPC and conventional pinning control (CPC) is also proposed. In addition, as for NS-based DPC, pinning control nodes (PCNs) can be found using the information of NS, which efficiently reduces the high computational complexity. The proposed STM-based DPC and NS-based DPC in this article are shown to be simple and concise, whicExponential function is a basic form of temporal signals, and how to fast acquire this signal is one of the fundamental problems and frontiers in signal processing. To achieve this goal, partial data may be acquired but result in severe artifacts in its spectrum, which is the Fourier transform of exponentials. Thus, reliable spectrum reconstruction is highly expected in the fast data acquisition in many applications, such as chemistry, biology, and medical imaging. In this work, we propose a deep learning method whose neural network structure is designed by imitating the iterative process in the model-based state-of-the-art exponentials' reconstruction method with the low-rank Hankel matrix factorization. With the experiments on synthetic data and realistic biological magnetic resonance signals, we demonstrate that the new method yields much lower reconstruction errors and preserves the low-intensity signals much better than compared methods.Deep learning based on deep convolutional neural networks (CNNs) is extremely efficient in solving classification problems in speech recognition, computer vision, and many other fields. But there is no enough theoretical understanding about this topic, especially the generalization ability of the induced CNN algorithms. In this article, we develop some generalization analysis of a deep CNN algorithm for binary classification with data on spheres. An essential property of the classification problem is the lack of continuity or high smoothness of the target function associated with a convex loss function such as the hinge loss. This motivates us to consider the approximation of functions in the Lp space with 1? p ? ∞. We provide rates of Lp -approximation when the approximated function lies in a Sobolev space and then present generalization bounds and learning rates for the excess misclassification error of the deep CNN classification algorithm. Our novel analysis is based on efficient cubature formulae on sphePrevalent domain adaptation approaches are suitable for a close-set scenario where the source domain and the target domain are assumed to share the same data categories. However, this assumption is often violated in real-world conditions where the target domain usually contains samples of categories that are not presented in the source domain. This setting is termed as open set domain adaptation (OSDA). Most existing domain adaptation approaches do not work well in this situation. In this article, we propose an effective method, named joint alignment and category separation (JACS), for OSDA. Specifically, JACS learns a latent shared space, where the marginal and conditional divergence of feature distributions for commonly known classes across domains is alleviated (Joint Alignment), the distribution discrepancy between the known classes and the unknown class is enlarged, and the distance between different known classes is also maximized (Category Separation). These two aspects are unified into an objective toThe tracking performance of discriminative correlation filters (DCFs) is often subject to unwanted boundary effects. Many attempts have already been made to address the above issue by enlarging searching regions over the last years. However, introducing excessive background information makes the discriminative filter prone to learn from the surrounding context rather than the target. In this article, we propose a novel context restrained correlation tracking filter (CRCTF) that can effectively suppress background interference via incorporating high-quality adversarial generative negative instances. Concretely, we first construct an adversarial context generation network to simulate the central target area with surrounding background information at the initial frame. Then, we suggest a coarse background estimation network to accelerate the background generation in subsequent frames. By introducing a suppression convolution term, we utilize generative background patches to reformulate the original ridge regressBased on radial basis function neural networks (RBF NNs) and backstepping techniques, this brief considers the consensus tracking problem for nonlinear semi-strict-feedback multiagent systems with unknown states and disturbances. The adaptive event-triggered control scheme is introduced to decrease the update times of the controller so as to save the limited communication resources. To detect the unknown state, external disturbance, and reduce calculation workload, the state observer and disturbance observer as well as the first-order filter are first jointly constructed. It is shown that all the output signals of followers can uniformly track the reference signal of the leader and all the error signals are uniformly bounded. A simulation example is carried out to further prove the effectiveness of the proposed control scheme.Traditionally, neural networks are viewed from the perspective of connected neuron layers represented as matrix multiplications. We propose to compose these weight matrices from a set of orthogonal basis matrices by approaching them as elements of the real matrices vector space under addition and multiplication. Making use of the Kronecker product for vectors, this composition is unified with the singular value decomposition (SVD) of the weight matrix. The orthogonal components of this SVD are trained with a descent curve on the Stiefel manifold using the Cayley transform. Next, update equations for the singular values and initialization routines are derived. Finally, acceleration for stochastic gradient descent optimization using this formulation is discussed. Our proposed method allows more parameter-efficient representations of weight matrices in neural networks. These decomposed weight matrices achieve maximal performance in both standard and more complicated neural architectures. Furthermore, the more paDexterous manipulation of objects heavily relies on the feedback provided by the tactile afferents innervating the fingertips. Previous studies have suggested that humans might take advantage of partial slip, localized loss of grip between the skin and the object, to gauge the stability of a contact and react appropriately when it is compromised, that is, when slippage is about to happen. To test this hypothesis, we asked participants to perform point-to-point movements using a manipulandum. Through optical imaging, the device monitored partial slip at the contact interface, and at the same time, the forces exerted by the fingers. The level of friction of the contact material was changed every five trials. We found that the level of grip force was systematically adjusted to the level of friction, and thus partial slip was limited to an amount similar across friction conditions. We suggest that partial slip is a key signal for dexterous manipulation and that the grip force is regulated to continuously maintainDeveloping manipulators for kinesthetic haptic interfaces is challenging due to a large number of design parameters. We propose a novel optimization-driven design approach taking into account the properties of the entire workspace of the human arm instead of a specific task. To achieve this, models of both the human arm and the haptic manipulator are derived and deployed in a suitable objective function, which simultaneously considers poses, velocities, accelerations, as well as displayed forces and torques. A detailed analysis and experiments with real-world motion tracking data show that the proposed method is capable of finding meaningful design parameters to enable good haptic transparency.Data-driven approaches are commonly used to model and render haptic textures for rigid stylus-based interaction. Current state-of-the-art data-driven methodologies synthesize acceleration signals through the interpolation of samples with different input parameters based on neural networks or parametric spectral estimation methods. In this paper, we see the potential of emerging deep learning methods in this area. To this end, we designed a complete end-to-end data-driven framework to synthesize acceleration profiles based on the proposed deep spatio-temporal network. The network is trained using contact acceleration data collected through our manual scanning stylus and interaction parameters, i.e., scanning velocities, directions, and forces. The proposed network is composed of attention-aware 1D CNNs and attention-aware encoder-decoder networks to adequately capture both the local spatial features and the temporal dynamics of the acceleration signals, which are further augmented with attention mechanisms that assign weights to the features according to their contributions.

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2023-09-15 (金) 05:18:00 (235d)